Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells
نویسندگان
چکیده
The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.
منابع مشابه
Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair.
Treatment options for lesions of the avascular region of the meniscus using regenerative medicine approaches based on resorbable scaffolds are rare. Recent approaches using scaffold-based techniques for tissue regeneration known from cartilage repair may be a promising treatment option for meniscal tears. The aim of the study was the investigation of meniscus matrix formation of in vitro expand...
متن کاملRepair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First-in-Human Study. Stem Cells
Meniscal cartilage tears are common and predispose to osteoarthritis (OA). Most occur in the avascular portion of the meniscus where current repair techniques usually fail. We described previously the use of undifferentiated autologous mesenchymal stem cells (MSCs) seeded onto a collagen scaffold (MSC/collagen-scaffold) to integrate meniscal tissues in vitro. Our objective was to translate this...
متن کاملDigital micromirror device projection printing system for meniscus tissue engineering.
Meniscus degeneration due to age or injury can lead to osteoarthritis. Although promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal men...
متن کاملAugmented repair of radial meniscus tear with biomimetic electrospun scaffold: an in vitro mechanical analysis
BACKGROUND Large radial tears that disrupt the circumferential fibers of the meniscus are associated with reduced meniscal function and increased risk of joint degeneration. Electrospun fibrous scaffolds can mimic the topography and mechanics of fibrocartilaginous tissues and simultaneously serve as carriers of cells and growth factors, yet their incorporation into clinically relevant suture re...
متن کاملRepair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First‐in‐Human Study
Meniscal cartilage tears are common and predispose to osteoarthritis (OA). Most occur in the avascular portion of the meniscus where current repair techniques usually fail. We described previously the use of undifferentiated autologous mesenchymal stem cells (MSCs) seeded onto a collagen scaffold (MSC/collagen-scaffold) to integrate meniscal tissues in vitro. Our objective was to translate this...
متن کامل